

Business Analysis for the Health Care Industry

Use Decision Analysis & Long-Term Market Forecasts to Build a Targeted Product Portfolio

The Center for Business Intelligence
Westin Princeton
8 October 2003

Outline

- Portfolio Management: Art or Science?
- Forecasting's Role in Portfolio Management
- Measuring Portfolio Performance
- A Combinatorial Approach to Portfolio Generation
- Portfolio Optimization
- Conveying the Results

Portfolio Management: Art or Exact Science?

- Many elements converge to make portfolio management more of an art than science:
 - Human factors
 - » Corporate inertia, pet projects
 - Technical factors
 - » Disagreements over methodology, lack of risk assessment, poorly executed forecasts, complexity
- Tools exist to help make the process more quantitative and impartial, while still preserving the role of judgment and experience

We haven't the money, so we've got to think. – *Lord Rutherford* (1908 Nobel in Chemistry)

Forecasting's Role in Portfolio Management

- Evaluating a portfolio first requires assessing the individual projects in the portfolio
 - Usually accomplished with long-term forecasts
 - Forecasts are the source of the quantitative metrics used to evaluate the portfolio
 - If desired, take qualitative factors into account

Forecasts-Content Is King

- The more complete the forecast, the more useful it is for portfolio planning
- In order of information content and complexity:
 - Revenue-only
 - Profit-and-loss (P&L) or income statement
 - » Ability to generate a net present value (NPV) for the project
 - P&L with development data
 - » Addresses development risk

Forecasting Risk–Beyond NPV

- Forecasts should explicitly incorporate risk
 - Avoids implicitly quantifying risk through the common, yet error-prone and misleading, method of high discount rate NPV analysis
 - Quantify:
 - » Development risk (timelines, probabilities of success)
 - » Revenue risk
- Techniques
 - Monte Carlo simulation
 - Decision trees
 - Options analysis

Prediction is very difficult, especially about the future. – *Neils Bohr*

Measuring Portfolio Performance

- What defines a good portfolio?
 - Financial measures
 - Product measures
- Your company wants more of the good...
 - Revenues, profits, product launches
- ...and less of the bad
 - Lifecycle "gaps", expenses, resource allocation, and risk (product failures, high results variance)
- Ultimately, which portfolio best satisfies corporate objectives?

Portfolio Financial Measures

- Revenue
 - Plus Growth & Timing
- Earnings
 - Plus Growth/per Share & Timing
- Cash Flow/Expenditures (Peak vs. Overall)
- NPV/Expected Value
- Probability of achieving specified goals
- Pearson Index
- Risk

Portfolio Product Measures

- Probability that at least *n* products launch
- Mean expected product launches
- Number of Products
 - Development Phase
 - Therapeutic Area

Indices Summarize Performance

- Indices are an effective way to summarize portfolio performance for ranking purposes
- Combined Measure Score—The Portfolio Decathlon
 - Averages deterministic (static) results for each portfolio based on specified weighting
 - Emphasize factors considered most important by the company

Index Calculation Example

Index Weight	15%	10%	20%	30%	25%		
	Expected drug launches	Peak Revenues (\$M)	Cash Flow Valley (\$M)	EV (\$M)	Year of Positive Cash Flow	Index	Index
Current Portfolio	2.3	\$8,875	\$121	\$4,934	2009	Arithmetic	Geometric
Index Value	0.38	0.64	0.52	0.56	0.92	Mean	Mean
Weighted Index Value	0.28	0.32	0.52	0.84	1.15	0.62	0.54

Probabilistic Measures in Portfolio Evaluation

■ Probabilistic (stochastic) measures should be incorporated in portfolio evaluation

 Combining risk elements from the individual projects at the portfolio level exposes the *portfolio*

effect

8 October 2003 Slide 11 www.ObjectiveInsights.com

Portfolio Effect

- Overall risk is reduced when combining risky assets in a portfolio due to diversification
 - Some assets perform well when others are performing poorly, reducing the overall variance of portfolio results
- Requires performing portfolio-level Monte Carlo simulation, since co-variance of projects with respect to each other is not known *a priori*

Combinatorial Portfolios

- If it works for drug development in the lab, why not apply it to drug development in the office as well?
- Initial set of portfolios is constructed from all possible combinations of projects
 - Assumes you don't know in advance what a superior portfolio looks like in terms of project composition
- Number of portfolios increases as power of 2
 - Portfolio of 15 projects has 2¹⁵ or 32,768 distinct combinations
 - Problem of selecting the best portfolio quickly becomes unmanageable as number of projects increase

Culling The Herd

- Q: How do you handle the sheer number of options presented by the combinatorial approach?
- A: Apply constraints to narrow down the number of portfolios to analyze

Concepts– "Constant" vs. "Variable" Projects

■ Constant ("Blessed") projects

- Always included in portfolio due to strategic reasons
 - » Close to launch, would never abandon
 - » Key therapeutic area
 - » Research chief's pet project
- Designated in advance
- Reduces number of potential portfolios

■ Variable projects

- May or may not be included in a given portfolio, depending on constraints
- Basis of combinatorial approach

Typical Portfolio Constraints

- Constraints are specified in advance
- Examples:
 - Upper and lower limits on number of simultaneous projects:
 - » In particular indications
 - » In each phase of development
 - Lifecycle product requirements; require certain number of:
 - » Improved formulations
 - » Second-generation products
 - Maximize positive portfolio characteristics
 - » Revenue, profits
 - Minimize negative portfolio characteristics
 - » Expenses

Screening Portfolios

- Combinatorial-generated portfolios are screened against constraints
 - Portfolios not meeting constraints are discarded
- Look at deterministic data and calculate indices for remaining portfolios
 - Top 30 portfolios as ranked by "decathlon" index score are retained for further analysis

Automation Isn't Everything

- A portfolio management system that only offers access to computer-generated portfolios neglects the role of judgment and experience
- Allow specification of *ad hoc* portfolios
 - May or may not meet logic constraints or have top index scores
 - Permits inclusion of a reference portfolio and "whatif" analysis

The Last Step: Probabilistic Analysis

- Run Monte Carlo simulation of top 30 portfolios (plus any *ad hoc* portfolios)
- Select top deterministic and stochastic portfolios for final comparison to any *ad hoc* portfolios
- Make the tough portfolio decisions
- You're done! (except for the hard work of implementation)

Conveying the Results

- Present best portfolio candidates to the decisionmakers
 - One page summary for each project, with additional

supporting data as needed

» Project rationale

» Summary financial data

Make everything as simple as possible, but not simpler.

- Albert Einstein

- » Clinical timelines, probabilities, and expenses
- Graphs and tables comparing the top portfolios
- Rationale for selecting each portfolio

Project Summary Sheet Example

Summary

- Good portfolio analysis requires good forecasts
 - Risk analysis improves quality of the process
 - There is more to risk analysis than NPV
- The combinatorial portfolio technique allows you to examine a large number of possible portfolios
 - Apply constraints and index rankings to reduce the complexity of the task

Business Analysis for the Health Care Industry

Use Decision Analysis & Long-Term Market Forecasts to Build a Targeted Product Portfolio

The Center for Business Intelligence
Westin Princeton
8 October 2003

