OBJECTIVE INSIGHTS

Business Analysis for the Health Care Industry

Deal Valuation Techniques

Charley Hooper

President, Objective Insights, Inc.

Bio 2003 Meeting
24 June 2003

Outline

- Historical Comparables
 - Estimate Deal Market Value
- Calculating Deal Intrinsic Value
 - Net Present Value
 - Expected Net Present Value
 - Risk-Averse Expected Net Present Value
 - Options
 - Monte Carlo Simulation

Main Elements That Influence Deal Value

Historical Comparables

- Analyze past deal values and deal terms
- What companies are actually paying
 - Theory versus practice
- Where to get comparables:
 - Press releases
 - BioSpace
 - Recombinant Capital (Recap)
- Windhover

BioCentury

- More exceptions than rules?
 - Different therapeutic areas (oncology vs. inflammation)
 - Market conditions are different

Comparables Depend Heavily on Market Conditions

■ Example:

- \$300 million for one Phase III product a few years ago
- \$50 million recently
- Intrinsic value is still very important
 - Provides basis for deal value
 - » An anchor against the market storm
 - Can help with negotiations
 - Cash flow is cash flow

Calculating Intrinsic Value

- Net present value (NPV)
- Expected net present value (ENPV or EV)
- Risk-averse expected net present value (REV)
- Options
- Monte Carlo Simulation

Net Present Value

■ Net cash flow discounted back to today

- Discount rate to use
 - Use risk-free discount rate if assuming product will launch
 - Use risk-free discount rate and multiply NPV by PTS (probability of technical success)
 - » Okay for projects with low expenses relative to revenues and high PTS
 - Use higher discount rate for crude approximation of risk

Net Present Value Limitations

- Risk-free discount rate assumes product will launch (all or nothing)
- Bigger discount rate is a crude approximation for EV
 - We know that each stage of development has its own probability of occurring
 - Real example: 40% discount rate has a mean absolute percentage error of 58%

Expected Net Present Value

- Expected net present value (ENPV or EV)
 - Multiply discounted cash flow of each phase by its probability
- Gives a better result and is easy and straightforward

Risk-Averse Expected Value

- Risk is discussed, but rarely explicitly managed
 - Objective: Variability of result
 - Subjective: Results affect us asymmetrically
- People and companies are risk-averse
 - Some losses are too big for us to handle
 - We have a tolerance to risk
- Insure your house and car?
 - The expected value is negative (that's how insurance companies stay in business)
 - The risk-averse expected value is positive
- Decisions may include potential losses that would be difficult or impossible to recoup
 - Approach: Pre-adjust gains and losses to account for risk tolerance
 - Share risky situations based on risk tolerances

Options

- Options used since ancient Greece (Aristotle mentions)
- Options approach is great for thinking
 - Escape route (commit only the irrevocable part of a decision)
 - Right to some future opportunity at minimal cost
- Financial options were a huge advance in financial analysis
 - Essential component of modern economics and modern global economies
 - » Control risk and lock in opportunities at minimal cost
 - 1997 Nobel Prize in Economics
 - » Robert C. Merton (Harvard) and Myron S. Scholes (Stanford) working with Fischer Black
 - Financial options designed for short-term analysis of liquid, wellestablished securities
- Real options are problematic for assessing pharmaceuticals in development
 - Long-term (10-20 years)
 - Ill-liquid (project isn't bought and sold every day on financial market)
 - Not well-established (project currently in development)

Black-Scholes Option Formula

- Needed for formula to determine option price (premium):
 - Current stock price (value of underlying asset)
 - Exercise (strike) price
 - Time until expiration
 - Risk-free interest rate
 - Volatility of stock price (asset)
- Black box formula
 - Complicated, difficult to understand formula
 - Artificial inputs
- "Decision trees can be too bushy." Options Advocate
- "Decision analysis has always handled real options."
 - Stanford Professor Ronald A. Howard

Monte Carlo Simulation

- Gambling resort in Monaco in Southeastern France
- Technique to quantify risk to aid decision making
- Monte Carlo simulation
 - Easy way to try thousands of reasonable scenarios
 - 1,000 to 2,000 sample scenarios (iterations)
 - » Selected based on probabilities
 - Statistics
 - Mean
- Median
- Mode
- Range
- Min
- Max
- Standard deviation
- Probability density functions
- Cumulative distribution functions
- Deciles
- Sensitivity analysis

Product Launch Date Risk

Monte Carlo Simulation Results

Revenue Risk

Monte Carlo Simulation Results

Product Revenues

Sensitivity Analysis

■ Identify key drivers of analysis model

- Aids explaining and understanding the model and results
- Helps focus research on the most important questions
- Saves valuable time and money

■ Value of information

- Passive: How much is better information worth?
- Only buy information if it is worth the cost

■ Value of control

- Active: How much is it worth to control a variable (such as market share)?
- Take actions to increase profitability

Value of Information

Sensitivity Analysis

Percent of Total Variance of Yrs 1-10 Cash Flow

Value of Control

Peak Product XYZ Share is the variable that produces the greatest swing value on expected net present value.

Product XYZ Leverage Diagram

Base Value: \$42.7 Million

OBJECTIVE INSIGHTS

Business Analysis for the Health Care Industry

Deal Valuation Techniques

Charley Hooper

President, Objective Insights, Inc.

Bio 2003 Meeting
24 June 2003

